Dutika Sahu College, Laida, Sambalpur

DEPARTMENT OF BOTANY

-: <u>PROGRAMME</u> <u>OUTCOME</u>: -

OBJECTIVES	PROGRAMME OUTCOME
 To understand the role & importance of plants in sustaining life on earth and the interrelationship between human beings & nature. To enable students gain requisite knowledge & acquire ability to apply them as & when required. To create awareness on natural resources 	 A fundamental understanding, comprehension, analysis & articulation of concepts studied. Students will have the ability to identify problems/issues & come up with creative solutions. Students will apply the gained knowledge on human welfare.
& their importance in sustainable development.	 Apply the knowledge to develop the sustainable & eco-friendly technology in industrial botany. Apply knowledge of medicinal & economic botany in day-to-day life.

COURSE OUTCOME OF B.SC. (BOTANY): -

SEMESTER	COURSE & SUBJECT	CO NUMBER	CO STATEMENTS: - ON SUCCESSFUL COMPLETION OF THIS COURSE, STUDENTS WILL BE ABLE TO
SEM-1	CORE-1 (Microbiology & Phycology)	CO-1	To study the different microbial life forms, reasoning their biological status.
		CO-2	Students can gain knowledge on algal classification, economic & ecological importance of algae.
		CO-3	Apply the micro biodiversity knowledge gained; analyze the fundamentals of cell structure & functions of organisms.
		CO-4	Develop a strong foundational knowledge on diversity, structure & life-cycle.
		CO-5	To assess-evaluate & summarize the complex topics concerning these lower kingdom life forms.
		CO-6	A student should be able to articulate, express verbally or demonstrate/write comprehensively on any of the topics covered.
	CORE-2 (Bio molecules & Cell biology)	CO-1	To study the structure, properties & functions of cell & it's components.
		CO-2	Students can understand the detailed knowledge on structure, classification &

			physicochemical properties of bio molecules.
		CO-3	Apply the knowledge gained, analyze the fundamentals of cell ultra structure, the structure & functions of cell organelles & cellular macro-micro bio molecules.
		CO-4	Students can analyze the knowledge on properties of cell & cell membrane, DNA staining techniques.
		CO-5	To assess-evaluate & summarize the knowledge on qualitative tests of bio molecules.
SEM-2	CORE-3 (Mycology & Phytopathology)	CO-1	To study detailed structure of fungus, different types of fungal spores & their mode of liberation.
		CO-2	Students can understand the detailed knowledge on different classes of fungi, their structure, classification life-cycle & reproduction.
		CO-3	Knowledge on diseases in plants caused by viruses, bacteria & fungi & biotechnological applications of fungi.
		CO-4	Conceptualize questions in the above mentioned complex subjects in plant life forms & their life-cycle.
		CO-5	Ability to summarize all the biological concepts illustrated through the topics covered & self-assesses the comprehension levels.
		CO-6	Acquire expression abilities on the above topics in writing, discuss or write in shapes of short/long, topic specific notes.
	CORE-4 (Archegoniate)	CO-1	Students can get detailed knowledge on morphology, anatomy, classification & properties of bryophytes, pteridophytes & gymnosperms.
		CO-2	Brief explanation on contribution of paleobotany with emphasis on Palaeozoic & Mesozoic era.
		CO-3	Understand spore morphology analysis & detailed knowledge on male & female reproductive structures in gymnosperms.
		CO-4	Identify key concepts/ideas on life forms under archegoniate, reasoning their phylogeny & biological status in plant kingdom.
		CO-5	Ability to summarize all the reproduction, economic importance & ecological

			significance of all plant kingdoms.
	GE-2A	CO-1	Define the terminologies:- plant water
	(Plant Physiology &		relations, ascent of sap, transpiration, plant
	Metabolism)		growth regulators & nitrogen metabolism.
		CO-2	Explain processes of mineral nutrition,
			absorption of water, mechanisms of water
			loss from plants.
		CO-3	Demonstrate processes of imbibition,
			osmosis and plasmolysis.
		CO-4	Comprehend the different physiological
			processes & metabolic pathways in plants.
		CO-5	Ability to summarize all the biological
			concepts illustrated through the topic.
		CO-6	Come-up with comprehensive notes that
			students can articulate, express, write in any
			verbal or written assessment process.
SEM-3	CORE-5	CO-1	To study the internal structure &
	(Anatomy of		arrangement of tissues in angiospermic
	angiosperms)		plant.
		CO-2	Understand different types of plant tissues.
		CO-3	Know the morphological & anatomical
			adaptations of plants growing in different
			habitats.
		CO-4	Students can analyze the anatomical studies
			of leaf, stem & root.
		CO-5	Ability to summarize the structure &
			functions of all tissues.
		CO-6	Hands on experiences on slide preparation
			for anatomical studies.
	CORE-6	CO-1	Students can enhance their knowledge on
	(Economic Botany)		morphology, uses & economic importance of
			crop plants.
		CO-2	Botanically identify & technically describe
			several economically important Cereals,
			Pulses, oil yielding plants, spices & medicinal
			crops of India.
		CO-3	Knowledge on uses of industrially important
			plant.
		CO-4	Analyze the knowledge on economically
			important plant parts & their products.
		CO-5	Ability in conceptualizing the above
			prescribed topics.
	CORE-7	Co-1	Students will understand the genetic
	(Genetics)		terminology of genetics & laws of
			mendelism.
		CO-2	Understand the fundamentals of Mendelian
			genetics, it's deviations & their applications.

		CO-3	Students will able to construction of linkage
			map by test-cross.
		CO-4	Develop analytical abilities foe solving
			problems in genetics.
		CO-5	Student gets idea & easily evaluates various
			types of inheritance & structural changes in
			chromosome.
		CO-6	Understanding the concept of gene
			structure, gene mutations & population
			genetics.
SEM-4	CORE-8	CO-1	Define terminologies related to molecular
	(Molecular Biology)		biology.
		CO-2	Student should be able to gain knowledge in
			different aspects of nucleic acids, their
			structure &v functions including historical
			perspectives.
		CO-3	Have a clear idea on the mechanisms
			involved in storage, processing &
			transmission of bio-genetic information
			through DNA replication.
		CO-4	Understand the cytological aspects of growth
			& development.
		CO-5	Understand DNA as the basis of heredity &
			variation.
		CO-6	Student can get practical acquaintance of
			isolation & quantification of DNA from
			plants.
	CORE-9	CO-1	Students can gather knowledge on origin,
	(Plant ecology &		formation & properties of abiotic
	Phytogeography)		components of the ecosystem.
		CO-2	Knowledge on properties of communities in a
			population & tropical and habitat
			organization in an ecosystem.
		CO-3	Study & acquired knowledge about
			ecological ecosystem dynamics including
			different components of environment.
		CO-4	Develop comprehensive ideas on population
			ecology & dynamics, different
			phytogeographic classification of the state &
			country, concepts of continental drift &
			endemism.
		CO-5	Practical knowledge on vegetation study &
			different ecological sites.
		CO-6	Come-up with comprehensive notes that
			students can articulate, express, write in any
			verbal or written assessment process.
	CORE-10	CO-1	To gather an overview of nomenclature,

	(Plant Systematics)		identification, classification& studying the
			concept of taxonomy.
		CO-2	To learn the techniques of effective & valid
			publication and knowledge about ICAN & it's
			principles.
		CO-3	Students will be able to learn the characters
			of various families, their key & floral formula,
			systematic position & herbarium
			preparation.
		CO-4	Able to determine the characteristic of plants
			like Asclepidiaceae, Lamiaceae, Acanthaceae,
			Rubiaceae families.
		CO-5	Students can face assessments on any
			evaluation process on the above mentioned
			topics along with concepts of biosystematics,
			identification, virtual herbarium, E-flora.
		CO-6	Various local & long excursions in this course
			will help to familiarise the students with the
			methods of collection, preservation of plants
			& learning about them.
	GE-2B	CO-1	Imparting an insight into the internal
	(Plant anatomy,		structure & reproduction of the most
	Embryology &		evolved group of plants, the angiosperm.
	Biotechnology)		
		CO-2	Understand the individual cells & also tissues
		<u> </u>	simultaneously.
		0-3	Understand the structural adaptations in
		<u> </u>	Linderstand the merphology & development
		CO-4	of reproductive parts.
		CO-5	Understand the techniques used to preserve
			& study plant materials.
		CO-6	Students can learn flower dissection & study
			of flower reproductive parts.
SEM-5	CORE-11	CO-1	State & visualise the history & scope of
	(Reproductive biology of		sexual reproduction in higher plants.
	angiosperms)		
		CO-2	Identify & discuss different important
			concept points on pollen & ovule biology
			starting from sporogenesis.
		CO-3	Describe the process of double fertilization&
			tripie fusion.
		CO-4	Develop clear cut ideas on embryo,
			endosperms, structure of pollen.
		CO-5	Understand the knowledge on embryology &
			embryological abnormalities in angiosperms.
	CORE-12	CO-1	Student can acquire detailed knowledge on

(Plant Physiology)		mechanisms of water, minerals & nutrient
		absorption of plants.
	CO-2	Understand the concept of plant-water
		relationship.
	CO-3	Demonstrate the processes of imbibition,
		osmosis, transpiration.
	CO-4	Develop clear cut ideas on water potential,
		it's component interactions in water
		relations.
	CO-5	Establish & display the mechanisms of water
		& mineral conduction, photosynthetic
		translocation.
	CO-6	Students will have hands on training to
		determine the physiological experiments
		related to plants.
DSE-1	CO-1	To gain knowledge on different types of
(Analytical techniques in		instruments & techniques involved in plant
plant science)		study.
	CO-2	Understand the principles & application of
		centrifuge.
	CO-3	Students can enhance their basic knowledge
		on biostatistics including measures of central
		tendency.
	CO-4	Students can acquire knowledge on
		microscopy.
	CO-5	Students can analyze the different analytical
		techniques of separation, profiling &
		identification of plant cells.
	CO-6	While a student is able to critically analyze
		the topics enunciated above can evaluate &
		state the concepts & phenomenon clearly
		that underlie the above mentioned subject.
DSE-2	CO-1	To discuss basic concepts of natural
(Natural resources		resources, sustainable utilization, biological
management)		resources, management strategies.
	CO-2	To understand the management of
		agricultural, horticultural, sericultural
		utilization & soil degradation.
	CO-3	Students will learn about contemporary
		practices in resources management, EIA, GIS,
		ecological footprint, waste management.
	CO-4	Understanding National & International
		efforts in resources management &
		conservation.
	CO-5	Students can improve their basic
		understandings on IPR, global arena on
		resources management.

		CO-6	Hands on experience on forest study using
			tools like GPS/GIS & understanding the
			ecological importance of forest resources.
SEM-6	CORE-13	CO-1	To give a comprehensive idea on the concept
	(Plant Metabolism)		of metabolism, pathways & their regulations,
			various cycle in plants like Calvin, HSK, C3,
			C4, CAM etc.
		CO-2	Study & critically analyze the metabolic steps
			involved in Carbon fixation & assimilation in
			plants.
		CO-3	Describe the complex processes of Oxidation
			of Carbon along with the detailed, step wise
			reactions in Glycolysis & energy harvest &
			storage in ATP synthesis.
		CO-4	Thorough study of nature, types &
			biosynthesis of lipids, the process of biotic *
			abiotic Nitrogen assimilation & metabolism
			involved in amino acid biosynthesis.
		CO-5	Students will have hands on training of
			various chromatography techniques;
			biochemical & measurement test & learn
			elaborate calculation techniques.
	CORE-14	CO-1	To understand the fundamentals of plant
	(Plant Biotechnology)		tissue culture techniques & it's applications
			like callus culture, protoplast culture.
		CO-2	Define the concept of recombinant DNA
			technology, restriction mapping, gene
			cloning.
		CO-3	Understand the concept of totipotency,
			explants, callus, and micro-propagation.
		CO-4	Knowledge on development of transgenic
			plants for agricultural & industrial use.
		CO-5	Students can learn regarding the preparation
			of media for tissue culture.
		CO-6	Basic concepts of research, general
			laboratory practices, data collection &
			documentation, scientific writing.
	DSE-3	CO-1	Students will understand the scope &
	(Horticultural practices &		importance of horticulture.
	Post harvest technology)		
		CO-2	Students will learn techniques of artificial &
			natural propagation.
		CO-3	Students get idea about various treatments
			for changing flowering season according
			demand in the market.
		CO-4	To give information about types of gardens &
			floriculture technology.

	CO-5	Students can analyze the horticultural techniques, landscaping & gardening.
	CO-6	Evaluate knowledge on post-harvest technology, disease management & germplasm management for horticulture.
	CO-7	Students will get accustomed with field visit to garden, nurseries, horticultural field & in some cold storage for giving an overall idea.
DSE-4 PROJECT (Horticultural practices & Post harvest technology)	CO-1	Students gain knowledge in different horticultural techniques.
	CO-2	To understand the procedure & application of grafting technique.
	CO-3	Analyse the grafting techniques in ornamental plants <u>(Rosa</u> <u>indica)</u> & fruit tree (Mangifera <u>indica</u>).
	CO-4	Basic concepts of research, general laboratory practices, data collection & documentation, scientific writing & it's presentation through oral, power point & poster methods & how to conceptualize, design & execute a science project.
	CO-5	On completion of all six semesters, a Botany graduate should be able to express, articulate & write scientifically on any of the chapters/topics mentioned above.